Big Plans For Big Plants

They say everything’s bigger in Texas, and that’s what Ceres, Inc. and Texas A&M are banking on. The pair are looking to sorghum — as tall as 20 feet — as a biofuel source.

Energy crop company Ceres, Inc. and the Texas Agricultural Experiment Station of The Texas A&M University System have entered into an exclusive, multi-year joint research and commercialization agreement for high biomass sorghum. These plants are not designed to produce grain, but rather vast amounts of biomass – the raw material for a new generation of biofuels made from stems, stalks and leaves.

Today, sorghum-to-ethanol production uses the grain, like corn, but the plants themselves hold the greatest potential for biofuel production, says Peter Mascia, Ceres vice president of product development. He notes that new technologies are making it possible to utilize the carbohydrates that comprise plant cell walls, called cellulose.

"As these technologies mature, farmers will transition from growing as much grain per acre to producing as much biomass as they can per acre, with as little energy and agronomic inputs as possible. This means new crops and specialized hybrids like these high-biomass sorghum types will be needed," Mascia says.

Plant scientist Dr. Bill Rooney of Texas A&M System’s Texas Agricultural Experiment Station (TAES) says that sorghum is a near-ideal crop for cellulosic biofuels. "Sorghum produces high yields, is naturally drought tolerant, and can thrive in places that do not support corn and other food crops. Sorghum also fits into established production systems and is harvested the year it is planted, unlike perennial grasses, so it fits well in a crop mix with perennial species and existing crops, like cotton," he says.

A pioneer in developing high-biomass sorghum, Rooney’s first breeding lines — the precursors to hybrids — can approach 20 feet under favorable conditions, he says, and could produce more than 2,000 gallons of ethanol per acre — more than four times the current starch-to-ethanol process.

To accelerate product development, Ceres and TAES will work together to expand their marker-assisted breeding efforts. Markers allow plant breeders to identify useful traits in seed tissue or when plants are still seedlings. Large numbers of markers provide a roadmap of the sorghum genome, cutting years off development timelines for new products, and making it easier to improve the makeup of the plants to facilitate processing. "Markers and biotechnology will be crucial for developing sorghum for cellulosic biofuels," says Rooney.

As part of this agreement, Ceres will obtain exclusive commercialization rights to the university’s high biomass sorghum hybrids developed in the joint research program. The TAES program will receive royalties as well as financial and technology support from Ceres. Other aspects of the collaboration have not been disclosed.

(Source: Ceres, Inc.)

 

Leave a Reply